CS 168 Congestion Control
Spring 2025 Discussion 7

1 TI'U_G / False

UDP uses congestion control.

False, TCP uses congestion control.

Flow control slows down the sender when the network is congested.

False, flow control ensures the sender doesn’t overflow the receiver’s buffer.

For TCP timer implementations, every time the sender receives an ACK for a previously unACKed packet,
it will recalculate ETO.

False, only clean samples are used. For example, ACKs on a packet that have been retransmitted are not
used since the sender cannot be sure which version the ACK is from.

CWND (congestion window) is usually smaller than RWND (receiver window).

True.

AIMD is the only “fair” option among MIMD, AIAD, MIAD, and AIMD.

True.

2 Impact of Fast Recovery

Consider a TCP connection, which is currently in Congestion Avoidance (AIMD):

« The last ACK sequence number was 101.

« The CWND size is 10 (in packets).

« The packets 101-110 were sent at t = 0, 0.1, ..., 0.9 (sec), respectively.
+ The packet 102 is lost only for its first transmission.

« RTT is 1 second.

Without fast recovery:

« On new ACK, CWND += m
+ On triple dupACKs, SSTHRESH = | YD | then CWND = SSTHRESH.
Time (sec) | Receive ACK (due to) CWND Transmit Seq # (mark retransmits)
1.0 102 (101) 10 4+ £ = 10.1 111
1.2 102 (103) 10.1 /
13 102 (104) 10.1 /

2 Congestion Control

Time (sec) | Receive ACK (due to) CWND Transmit Seq # (mark retransmits)
1.4 102 (105) %] =5 102 (Rx)
L5 102 (106) 5 /
1.6 102 (107) 5 /
1.7 102 (108) 5 /
1.8 102 (109) 5 /
1.9 102 (110) 5 /
2.0 102 (111) 5 /
2.4 112 (102) 5+1=5.2 112 - 116
With fast recovery:

+ On triple dupACKs, SSTHRESH = L%J then CWND = SSTHRESH + 3, enter fast recovery.
« In fast recovery, CWND += 1 on every dupACK.
« On new ACK, exit fast recovery, CWND = SSTHRESH.

Time (sec) | Receive ACK (due to) CWND Transmit Seq # (mark retransmits)
1.0 102 (101) 10+ & =10.1 111
1.2 102 (103) 10.1 /

1.3 102 (104) 10.1 /

1.4 102 (105) |91 +3=38 102 (Rx)
1.5 102 (106) 9 /

1.6 102 (107) 10 /

1.7 102 (108) 11 112
1.8 102 (109) 12 113
1.9 102 (110) 13 114
2.0 102 (111) 14 115
2.4 112 (102) SSTHRESH = 5 116

Note: Three dupACKs = 1 regular ACK + 3 ACKs of a sequence number that have been ACKed before already,
so we retransmit on the 4th ACK of seq 102.

Congestion Control 3

3 AIMD Throughput

cwnd
N
W | o e e e e e e e
MW |- oo oo R - Vo b
1 >
- — t (RTT)
W/A W(1-M)/A

Consider a generalized version of AIMD, where:

+ For every window of data ACK_ed, the window size increases by a constant A.

+ When the window size reaches W, aloss occurs, and the window size is multiplied by a constant M < 1.

For simplicity, assume that W (1 — M) is divisible by A. Thus, the window sizes will cycle through the
following: WM, WM + A, WM + 2A, ... W. Let the RTT denote the packet round trip time. A graph of
window size versus time is referenced in the figure above.

What is the average throughput? Express your answers in the number of packets, so we do not need to
consider MSS.

Average number of packets in flight (MW+W) W(M+1)

Throughput = RTT = 32X RIT — 2x RIT

Calculate the loss probability p, using W and M.

We have one drop out of every W(lgM) X MW;W packets sent (the area of the shaded trapezoid in the

plot). Thus, the loss probability is:

o 1 _ 2A
P=woiwm _wwew — W2(1-M?)
A X2

Derive the formula for throughput in part (a) when M = 0.5 and A = 1, using only p and RTT.
W(M+1) 3w
2x RTT 4x RIT

_ 24 _ 2 _ 8
P= w2z = omswe2 — 3we

Throughput =

We get W =,/ % from the loss probability p, and plug this into the throughput equation:

8
Throughput = —5% _ XV _ 9x8 1 _ 1 /3
gNPpUl = S RTT = Zx RTT — \/ T6x3xp RTT — RIT\/ 2p

4 Congestion Control

4 Domain Name System

.com’'s DNS
Server . ,
Root DNS o .sandwich.com
Server { ‘ s DNS Server

P

Your Local DNS order.sandwich.com’s
Computer Server DNS Server

A sandwich ordering website www.order.sandwich.com is accepting online orders for the next T
minutes. Consider the following setup of DNS servers, with annotated latencies between servers.
Assume that:

» The latency between your computer and the website’s server is ¢.

+ Once you send an order for a sandwich, you must wait for a confirmation response from the website
before issuing another.

+ Your computer does not cache the website’s IP address.

Your local DNS server doesn’t cache any information.

Your computer begins by issuing a DNS query for www.order.sandwich. com to its local DNS server,
which takes time a. Your local DNS server then iteratively queries the root DNS server, .com’s DNS
server, .sandwich.com’s DNS server, and order.sandwich.com’s DNS server, which takes time 2b +
2¢ + 2d + 2e. It then returns the result of the query to you, which takes time a.

After obtaining the IP address, your computer issues a sandwich request to www.order.sandwich.
com, which responds with an order confirmation, taking time 2¢.

The total time per sandwich order is: 2a + 2b + 2¢ + 2d + 2e + 2t

Thus, the total number of sandwiches that can be ordered in time 7' is: [2a+2b+2c£2d+2e+2tJ

Your local DNS server caches responses, with a time-to-live L > T'.

Congestion Control 5

If L > T, once the result of the DNS query for www.order.sandwich. comis cached, it remains cached
in our local DNS server until the website’s server ultimately goes down.

+ The first query takes the same amount of time as before: 2a + 2b + 2¢ + 2d + 2e + 2¢

+ Subsequent queries take only 2a + 2t, since the local DNS server can now provide the IP imme-
diately.

Thus, the total number of sandwiches we can order is:

{1 + | TRt 2 22020 | §f T > 2a + 2b + 2 + 2d + 2e + 2t

0 otherwise

Let T' = 600 seconds and a = b =c =d = e =t = 1 second. Your local DNS server caches responses
with a finite TTL of 30 seconds.

When the first DNS query is made, the response gets cached in the local DNS server at:
a+ 2b+ 2c + 2d + 2e = 9 seconds

This response remains cached for 30 seconds, expiring at time 39 seconds.

« The first order is completed at time: 12 seconds (9s + a + t)

+ Additional orders can be placed from time 12 to 39, each taking 4 seconds (2a + 2t).

+ The number of orders made during this cached period is: [%1 =7

+ The pattern repeats every 40 seconds (1" = 600 allows for 15 cycles): % =15

« Total sandwiches ordered: 15 x (7 + 1) = 120
Not bad!

	True/False
	Impact of Fast Recovery
	AIMD Throughput
	Domain Name System

